

Optimizing the structure of train line plan to improve the capacity of High Speed Railway

Lei NIE, Professor Inie@bjtu.edu.cn School of Traffic and Transportation Beijing Jiaotong University 2017-11-17

OUTLINE

High speed railway network in China

Operation performance of HSR in China

The characteristics of train line plan

Capacity improvement

Capacity Shortage of Railway Transport

- Goods by Railway (2006-2010)
- **Wood: 85%**
- **Crude oil: 85%**
- **Coal: 60%**
- □ Steel etc.: 80%

Passenger in Railway Station

Traffic jam in city, almost no subway

The busiest railway in the world: 6% (route length), 25% (converted ton-kilometer) in 2005.

Railway, Inner river, Pipeline length(10 thousand km)

- 2014, over 16,000 km high-speed railway in operation, 14.3% in total length
- > 2015, over 19,000 km high-speed railway in operation, 15.8% in total length of 120000km
- 2016, the operational route lengths of high speed railway has reached 22,000 km, the longest operational route in the world.

Mid-term and Long-term Railway Network Plan (2017)

OUTLINE

High speed railway network in China

Operation performance of HSR in China

The characteristics of train line plan

Capacity improvement

Shorten the Time-space Gap

Shanghai—Changsha Shanghai—Wuhan

北京交通

BeiJing JiaoTong University

Passenger Flow Volume

- **2016, 4300 EMU train/day**
- **Rapid increase of EMU train passenger**
 - Year 2013, 670 million, 32.4%
 - > Year 2014 , 908 million, 40.0%
 - Year 2015 , 1106 million, 46.5%
 - Year 2016 , 1443million, 52%

30%

increasing

Market Share of Passenger Transportation

(Year 2015)	Total volume	Waterway	Railway	Civil aviation	Highway
Passenger volume (10,000 persons)	1,943,271	27,072	253,484	43,618	1,619,097
Passenger traffic turnover (100 million person-kilometers)	30,058.89	73.08	11960.60	7282.55	10,742.66

Passenger volume (10,000 persons)

Passenger traffic turnover (100 million personkilometers)

Waterway Railway Civil aviation Highway

Transportation during the Spring Festival: The world's largest migration

		100 C						
	Year	Start and	Total passengers	Raiway	Highway	Waterway	Civil Aviation	-
		finish date	(100 million)	(100 million)	(100 million)	(10 thousand)	(10 thousand)	:4
-	2002	1.28-3.08	17.4	1.3	15.9	2430	725	2 BUTT
1	2003	1.17-2.25	18.2	1.3	16.6	2400	870	
	2004	1.07-2.15	18.9	1.4	17.2	2600	1050	
the second	2005	1.25-3.05	19.5	1.4	17.7	2760	1248	
ALMES	2006	1.14-2.22	20.4	1.5	18.8	2800	1760	-
-	2007	2.03-3.14	22.5	1.6	20.5	2850	2000	
DILLET	2008	1.24-3.02	22.6	2.0	20.2	2878	2100	
the sets	2009	1.11-2.19	23.6	1.9	21.1	3089	2572	
	2010	1.30-3.10	25.6	2.0	22.9	3357	2902	
	2011	1.19-2.27	28.6	2.2		26.4		
	2012	1.08-2.16	31.1	2.2	28.5	4245	3374	
	2013	1.26-3.06	34	2.4	31.0	4380	3810	2
-	2014	1.16-2.24	33.2	2.7		30.5		
	2015	2.04-3.16	28.1	2.9	24.2	4286	4920	
-	2016	1.24-3.3	29.1	3.3	24.9	4260	5309	
	2017	1.13-2.21	29.8	3.6	25.2	4350	5830	1
		10000				Contraction of the local sector		

Revenue of Chinese HSR

- Beijing-Shanghai high speed railway:
 - First year: 11 billion RMB
 - Second year: 17 billion RMB
 - > Third year: 25 billion RMB
- Without considering depreciation, 6 HSRs revenue and expenditure can be balanced
 - > Beijing-Tianjing: 120 km, 2008-8-1
 - **Beijing-Nanjing:** 301 km, 2010-7-1
 - Beijing-Shanghai: 1318 km, 2011-6-30
 - Shanghai-Hangzhou: 202km, 2010-10-26
 - > Nanjing-Hangzhou : 249km, 2013-7-1
 - ► Guangzhou-Shenzhen: 126km, 2011-12^F26ⁿ: web information</sup>

OUTLINE

High speed railway network in China

Operation performance of HSR in China

The characteristics of train line plan

Capacity improvement

0:00-6:00 Maintenance time

High speed railway (Beijing South-Shanghai Hongqiao)

北京交通大婆

The characteristics of train line plan non-cyclic timetable

北京交通大婆

Train frequency between two stations

	武汉	咸宁北	赤壁北	岳阳东	汨罗东	长沙南	株洲西	衡山西	衡阳东	耒阳西	韶关	英德西	清远	广州北	广州南	庆盛	虎门	光明城	深圳北
▶ 武汉		23	14	36	13	65	19	12	30	14	. 31	9	9	11	57	0	10	0	15
咸宁北	19		6	12	6	23	8	4	12	4	. 13	4	4	4	18	0	2	0	4
赤壁北	16	4		4	6	14	6	2	10	5	. 8	4	3	4	13	0	1	0	2
岳阳东	43	14	7		6	38	9	10	17	10	. 18	7	8	5	32	0	7	0	9
汨罗东	16	6	6	8		14	5	4	4	4	. 9	2	3	4	12	0	0	0	1
长沙南	64	19	16	45	18		25	21	41	20	. 46	12	15	17	79	1	19	0	25
株洲西	22	5	6	18	4	27		5	14	9	. 19	4	8	9	25	1	5	0	6
衡山西	12	4	3	10	5	21	5		6	11	. 17	4	6	7	21	0	5	0	6
衡阳东	30	11	10	20	8	40	14	6		6	. 22	12	9	9	41	1	10	0	12
耒阳西	11	3	4	11	5	21	12	10	5		. 17	4	5	8	20	0	4	0	6
郴州西	32	8	9	23	7	43	12	12	29	4	22	12	12	10	49	1	13	0	16
韶关	31	9	8	25	8	42	20	10	22	16		4	9	10	46	1	11	0	12
英德西	7	4	3	6	6	14	5	8	9	6	. 6		4	4	12	0	4	0	5
清远	9	4	4	6	5	17	8	7	11	8	. 8	4		5	15	0	3	0	4
广州北	7	2	3	6	3	11	6	6	8	6	. 6	4	4		17	0	1	0	1
广州南	56	14	14	39	15	78	27	21	40	21	. 42	14	17	11		1	19	0	25
庆盛	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1		1	0	1
虎门	12	4	2	8	1	21	6	6	12	5	. 11	3	2	2	21	1		0	19
光明城	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0		0
深圳北	15	5	3	9	1	25	7	7	13	6	. 12	3	2	2	25	1	21	0	

Train departure time distribution at stations BeiJing JiaoTong University

THE	目前内容	za 🗌		•	1.844	40	10 AM	经保持过度		经 年20193	本日 不敢不无	列生生物															
0	1	8	2	3	4	. 8	5	6	7		8	9	10	11	13	2 1	3 1	4	15	16	17	18	19 2	0	21 2	12 2	3
1			1									T	1					2011	-			1					1
+					1																				1		
+	-			-	-		-		-				-		-		-					-			•		-
+		-		-	-	_	-	-		_		-	-	•					•	•	•			•			-
1					_				_		-			-									-		-		
			-														12.20							-			
	_											-	- 192				-					1000			0.755		
															1		1.1.1	•			1	1.00		•••••	100		
+				-	+		-	-					-	-			-			1			•				
⊢			-	-	-		-	-	-		•	•••	-	-				•	-	-	-			••	-		-
-	-	_		-	-		-	-	-				+	+	_						-			•	-	-	-
																100				112-02-							
			1														S - 51										
t			1								1	· .			•							-	•				
t				-								•	•	•	•••				•		•		<u>+-</u>				
	-	•		-	•	•	-		-	•	•	•	+ •		•	•••	••	• ••	+ • •	• • • • •	-		•••	••	1 1		•
+			•			-	•	-		_	••		-	+	•	•	•		• •		••						-
	_		-	-	-	_			-	_			-	_													
								-					12							100.00					0 10		
L												1	10	8558		S - 19	- 50 - 5		B (2)	126 266		1	0.000	1.0	1		
1																			•	•		1					
t		**	•	••	+		-	1	-			•••	•	-	• •		•••	•••	*****				•••	•			-
+	-	-		-	-	_	-	-	-			•	-	-	-	•	_		••		•	-		•			-
L				_				_	_						_												
																					_	-					
				~																							
Ι.											• ••		1	••••													
+			-	-	-		-	-		• •		•	• •	•	• •								• •				-

- Large-scale network: 22000km→45000km
 EMU train station: 770
- ENIU train Station. //U
 ENIU train 1622 train not
- **EMU train, 4632 train paths**
- **Train operation distance:** <100km $\rightarrow >2500$ km
 - > >2000km, about 108 train paths
 - > 2760km, from Beijing to Kunming
 - > 16h24min, from Chengdu East to Fuzhou

OUTLINE

High speed railway network in China

Operation performance of HSR in China

The characteristics of train line plan

Capacity improvement

Case 1 Non-cyclic operation

Non-cyclic timetable: A mixed integer programming model

Objective

> The minimum occupied time: train path compression

 $\min \quad Z=\max\{a_{i,d_i} \mid i \in I\} - \min\{d_{j,o_i} \mid j \in I\}$ $\min \quad Z=\sum_{i=1}^{I} a_{i,des_i}$

Constraints

• Running time

 $a_{is+1} - d_{is} \ge r_{is} + \beta_{is} x_{is} + \gamma_{is+1} x_{is+1}$

 $a_{is+1} - d_{is} \le r_{is} + \beta_{is} x_{is} + \gamma_{is+1} x_{is+1} + y_{is}$

• **Dwell time** $d_{is} - a_{is} \ge w_{is} x_{is}$

$$d_{is} - a_{is} \le \overline{w_{is}} x_{is}$$

- Headways
 - $d_{js} d_{is} + M (1 O_{ij}^{s}) \ge HD_{s}$ $d_{is} - d_{js} + MO_{ij}^{s} \ge HD_{s}$ $a_{js+1} - a_{is+1} + M (1 - O_{ij}^{s}) \ge HA_{s+1}$ $a_{is+1} - a_{js+1} + MO_{ij}^{s} \ge HA_{s+1}$

- Overtaking $|\sum_{j=1, j\neq i}^{N} \left(O_{ij}^{s-1} - O_{ij}^{s}\right)| \leq 1$
 - Train order 列车前后行关系
 O^s_{ij} + O^s_{ji} = 1
 - Cross-line train 跨线车的固 定到发 <sub>k_{is} ≤ d_{is} ≤ k_{is}
 </sub>
 - Departure time control $t_{is} \le d_{is} \le t_{is}$
 - Maintenance time window $d_{is} \ge SL_e$ $a_{is} \le SL_h$

Algorithm

- The Branch and Bound based on the optimal estimation
 To solve the large-scale problem: The Segmentation and Scroll strategy used to draw train timetable piecewised
- CPLEX solver, and the visualization and index statistics of train timetable are realized by MATLAB.

Fixedtrain

∠HA .

Case study: Non-cyclic timetable

Beijing-Shanghai

2017. 01 timetable at Xuzhou-Bengbu

Case s	tudy	Non-cy	yclic	timetat		Reduce	
2017-	01 timeta	ble at Xuzhou	1-Bengb	u		ccupation time by 21min	
	Ear	liest departure	Late	est arrived	Occp. time		
real world	ł	6:40		23:22	1	002	
optimized	1	6:48		23:01	• 973		
		ravel e/min	Travel s /(km/	•	Technical speed /(km/h)		
real world	42	2543	219)	228.7		
optimized	41	1811	223.	5	240.0		
train	Trave	el /min	Travel /(km	•	Technical speed/(km/h)		
	RW	Opt	RW	Opt	RW	Opt	
G	41821	41198		225.1	230.8	241.2	
D	722	613	141	162.3	194	180.1	

Case 2 Cyclic operation

Analysis on section capacity for cyclic timetable (TR. Part C 2016)

- **Integrating capacity analysis with timetabling** can reveal the influence of the structure of train line plans and operating on improving capacity utilization .
- For most capacity analyses and cyclic timetabling methods, **the cycle time is a constant.**
- A minimum cycle time calculation (MCTC) model based on the periodic event scheduling problem (PESP) for a given train line plan. A non-collision constraint and a series of flexible overtaking constraints (FOCs) are constructed based on variations of the original binary variables in the PESP.
- Because of the complexity of the PESP, **an iterative approximation (IA) method** for integration with the CPLEX solver is proposed.

北京交

Our model

- ▶ based on the PESP and the model in Sparing and Goverde (2013)
- Further ongoing study of our previous paper
 (Zhang and Nie (2016) on Transportation Part C)
 - Objective: minimize the cycle time *T*
 - Input: periodic line plan, operation parameters and service requirements
 - Output: minimum cycle time *T* (important), periodic timetable

- The (ILP) model was coded by <u>MATLAB</u> <u>R2012a</u> and solved by <u>Cplex 12.3</u>
- Our <u>extended iterative approximation methods</u> can help <u>Cplex solver</u> reducing the computation time

Xin Zhang, Lei Nie, School of Traffic and 06/04/2017 Transportation, Beijing Jiaotong University

Case study: Cyclic timetable

Fig. 14. Examples of timetables different colors represent different train lines; the blue numbers indicate the numbers of the lines; *K* = 0; 北京交

BeiJing JiaoTong University

Fig. Influence of the regularity constraint and the train speed gap on the minimum *T* (the MCTC model *with* the FOCs; the average computation time for all cases is 4,420 seconds).

Case study: Cyclic timetable

Fig. Influence of *K* and the proportion of fast trains on the minimum *T* (MCTC model *with* the FOCs).

BeiJing JiaoTong University

Real world Case: Cyclic timetable

Fig. 19. Time-space diagram of the solution for the realworld test case *with* the FOCs

34

Cross-line train

A train time window is the time span that the train can depart or arrive in, and depends on the requirements of timetabling (usually for passenger transfers in stations)

北京交通

BeiJing JiaoTong University

A train time window for cross-line train Beijing Jiao Tong University

Naming rules of the experiments: four factors of train time window are included

"0-0-0-*" means the case without time windows, i.e. the basic case

	Property	Keai-world case
	Number of stations	23
	Number of trains	18
	Number of lines (train stop schedules)	17
06/04/	Line plan	17 types of train stop schedule
00/04/	2017	

]/

The structure of train line plan

≻Cross-line train: 69.7%

Section	Total trains	Cross-line	%
北京南-廊坊	109	50	45.9%
廊坊-天津南	103	47	45.6%
天津南-沧州西	128	69	53.9%
沧州西-德州东	126	68	54.0%
德州东-济南西	125	68	54.4%
济南西-枣庄	123	73	59.3%
枣庄-徐州东	121	71	58.7%
徐州东-宿州东	142	90	63.4%
宿州东-蚌埠南	141	89	63.1%
蚌埠南-南京南	125	70	56.0%
南京南-上海虹桥	109	57	52.3%

- Box-plot: number of time windows

- Box-plot: number of time windows

The overlaps show that even the number of time windows increases, they still have a chance to obtain low minimum cycle time. Therefore, the significance of the time window location is highlighted.

Xin Zhang, Lei Nie, School of Traffic and 06/04/2017 Transportation, Beijing Jiaotong University

Optimize the structure of Train line plan

Future huge traffic demand

Vear 2016

Passenger: 2.75 billion, 2.0 times/person **Vear 2020** Demand: 1.45 billion people × 4 times =5.8 billion persons? Objective: 4 billion

(National Railway Cooperation)

北京交

Thanks!

2 Question