Optimizing the structure of train line plan to improve the capacity of High Speed Railway

Lei NIE, Professor
Inie@bjtu.edu.cn
School of Traffic and Transportation
Beijing Jiaotong University
2017-11-17

OUTLINE

－High speed railway network in China

－Operation performance of HSR in China
－The characteristics of train line plan
－Capacity improvement

Capacity Shortage of Railway Transport

Goods by Railway（2006－2010）
－Wood：85\％
－Crude oil：85\％
－Coal：60\％
－Steel etc．：80\％

Passenger in Railway Station

Traffic jam in city，almost no subway

The busiest railway in the world： 6%（route length）， 25%（converted ton－kilometer）in 2005.

The Development of Network

Railway, Inner river, Pipeline length(10 thousand km)

化CRH 中国高速铁路运营线路图

>2014 ，over $16,000 \mathrm{~km}$ high－speed railway in operation， 14.3% in total length
>2015 ，over 19，000 km high－speed railway in operation， $\mathbf{1 5 . 8 \%}$ in total length of 120000 km
$>$ 2016，the operational route lengths of high speed railway has reached $22,000 \mathrm{~km}$ ，the
longest operational route reached $22,000 \mathrm{~km}$ ，the
longest operational route in the world．
－ （国铁路

Mid－term and Long－term Railway Network Plan（2017）

中长期高速铁路网规划图

－Year 2020，Route Length 150 thousand km

4 N－S＋4W－S

8 N－S＋4W－S

OUTLINE

－High speed railway network in China

－Operation performance of HSR in China
－The characteristics of train line plan
－Capacity improvement

Shorten the Time－space Gap

Passenger Flow Volume

- 2016, 4300 EMU train/day
- Rapid increase of EMU train passenger
$>$ Year 2013, 670 million, 32.4\%
> Year 2014 , 908 million, 40.0%
> Year 2015, 1106 million, 46.5\%
> Year 2016 , 1443million, 52\%

都

Market Share of Passenger Transportation

BeiJing JiaoTong University

(Year 2015)	Total volume	Waterway	Railway	Civil aviation	Highway
Passenger volume (10,000 persons)	$\mathbf{1 , 9 4 3 , 2 7 1}$	$\mathbf{2 7 , 0 7 2}$	253,484	$\mathbf{4 3 , 6 1 8}$	$\mathbf{1 , 6 1 9 , 0 9 7}$
Passenger traffic turnover (100 million person-kilometers)	$\mathbf{3 0 , 0 5 8 . 8 9}$	$\mathbf{7 3 . 0 8}$	$\mathbf{1 1 9 6 0 . 6 0}$	$\mathbf{7 2 8 2 . 5 5}$	$\mathbf{1 0 , 7 4 2 . 6 6}$

Passenger volume ($\mathbf{1 0 , 0 0 0}$ persons)

Passenger traffic turnover (100 million personkilometers)

- Waterway ■ Railway ■ Civil aviation ■ Highway

Transportation during the Spring Festival: The world's largest migration

| Year | Start and
 finish date | Total
 passengers | Raiway | Highway | Waterway | Civil
 Aviation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(100$ million $)$ | $(100$ million $)$ | $(100$ million $)$ | $(10$ thousand
 $(10$ thousand | (| | |

Revenue of Chinese HSR

\square Beijing-Shanghai high speed railway:
> First year: 11 billion RMB
> Second year: 17 billion RMB
> Third year: 25 billion RMB
Without considering depreciation, 6 HSRs From: Huaxia Times and expenditure can be balanced
> Beijing-Tianjing: 120 km, 2008-8-1
> Beijing-Nanjing: 301 km, 2010-7-1
> Beijing-Shanghai: 1318 km, 2011-6-30
> Shanghai-Hangzhou: 202km, 2010-10-26
> Nanjing-Hangzhou : 249km, 2013-7-1
$>$ Guangzhou-Shenzhen: 126km, 2011-12 ${ }^{\mathrm{F} 26}$: web information

OUTLINE

－High speed railway network in China

－Operation performance of HSR in China
－The characteristics of train line plan
－Capacity improvement

0：00－6：00 Maintenance time

BeiJing JiaoTong University

High speed railway（Beijing South－Shanghai Hongqiao）

The characteristics of train line plan non－cyclic timetable

125 （2列重联）

Train frequency between two stations

	武汉	咸宁北	赤壁北	岳阳东	沺罗东	长沙南	㭑洲西	衡山西	衡阳东	来阳西	韶关	英德西	清远	广州北	广州南	庆盛	虎门	光明城	深圳扑
－武汉		23	14	36	13	65	19	12	30	14	31	9	9	11	57	0	10	0	15
咸宁北	19		6	12	6	23	8	4	12	4	13	4	4	4	18	0	2	0	4
赤壁北	16	4		4	6	14	6	2	10	5	8	4	3	4	13	0	1	0	2
岳阳东	43	14	7		6	38	9	10	17	10	18	7	8	5	32	0	7	0	9
泪罗东	16	6	6	8		14	5	4	4	4	9	2	3	4	12	0	0	0	1
长沙南	64	19	16	45	18		25	21	41	20	46	12	15	17	79	1	19	0	25
株洲西	22	5	6	18	4	27		5	14	9	19	4	8	9	25	1	5	0	6
衡山西	12	4	3	10	5	21	5		6	11	17	4	6	7	21	0	5	0	6
衡阳东	30	11	10	20	8	40	14	6		6	22	12	9	9	41	1	10	0	12
来阳西	11	3	4	11	5	21	12	10	5		17	4	5	8	20	0	4	0	6
棚州西	32	8	9	23	7	43	12	12	29	4	22	12	12	10	49	1	13	0	16
韶关	31	9	8	25	8	42	20	10	22	16		4	9	10	46	1	11	0	12
英德西	7	4	3	6	6	14	5	8	9	6	6		4	4	12	0	4	0	5
清远	9	4	4	6	5	17	8	7	11	8	8	4		5	15	0	3	0	4
广州北	7	2	3	6	3	11	6	6	8	6	6	4	4		17	0	1	0	1
广州南	56	14	14	39	15	78	27	21	40	21	42	14	17	11		1	19	0	25
庆盛	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1		1	0	1
虎门	12	4	2	8	1	21	6	6	12	5	11	3	2	2	21	1		0	19
光明城	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
深圳北	15	5	3	9	1	25	7	7	13	6	12	3	2	2	25	1	21	0	

Train departure time distribution at stations（iin 非京交通大掌

Complex operation

－Large－scale network： $22000 \mathrm{~km} \rightarrow 45000 \mathrm{~km}$
－EMU train station： 770
－EMU train， 4632 train paths
－Train operation distance：$<100 \mathrm{~km} \rightarrow>2500 \mathrm{~km}$
\gg2000km，about 108 train paths
＞ 2760 km ，from Beijing to Kunming
＞16h24min，from Chengdu East to Fuzhou

OUTLINE

－High speed railway network in China

－Operation performance of HSR in China
－The characteristics of train line plan
－Capacity improvement

Case 1

Non－cyclic operation

A model for analyzing the influence of train

line structure on section capacity逪）非京交通大幥
Non－cyclic timetable：
A mixed integer programming model

Objective

$>$ The minimum occupied time： train path compression

$\min Z=\max \left\{\mathrm{a}_{i, d_{i}} \mid i \in I\right\}-\min \left\{\mathrm{d}_{j, o_{i}} \mid j \in I\right\}$

$$
\min \mathrm{Z}=\sum_{i=1}^{I} a_{i, d e s_{i}}
$$

Model

Constraints

－Running time
$a_{i s+1}-d_{i s} \geq r_{i s}+\beta_{i s} x_{i s}+\gamma_{i s+1} x_{i s+1}$
$a_{i s+1}-d_{i s} \leq r_{i s}+\beta_{i s} x_{i s}+\gamma_{i s+1} x_{i s+1}+y_{i s}$
－Dwell time
$d_{i s}-a_{i s} \geq w_{i s} x_{i s}$
$d_{i s}-a_{i s} \leq \bar{w}_{i s} x_{i s}$
－Headways

$$
\begin{aligned}
& d_{j s}-d_{i s}+M\left(1-O_{i j}^{s}\right) \geq H D_{s} \\
& d_{i s}-d_{j s}+M O_{i j}^{s} \geq H D_{s} \\
& a_{j s+1}-a_{i s+1}+M\left(1-O_{i j}^{s}\right) \geq H A_{s+1} \\
& a_{i s+1}-a_{j s+1}+M O_{i j}^{s} \geq H A_{s+1}
\end{aligned}
$$

－Overtaking
$\left|\sum_{x i \pm i \pm i}^{N}\left(O_{i j}^{s-1}-O_{i j}^{s}\right)\right| \leq 1$
－Train order 列车前后行关系
$O_{i j}^{s}+O_{j i}^{s}=1$
－Cross－line train 跨线车的固定到发

$$
k_{i s} \leq d_{i s} \leq k_{i s}
$$

－Departure time control

$$
t_{i s} \leq d_{i s} \leq \overline{t_{i s}}
$$

－Maintenance time window

$$
\begin{aligned}
d_{i s} & \geq S L_{e} \\
a_{i s} & \leq S L_{b}
\end{aligned}
$$

Algorithm

- The Branch and Bound based on the optimal estimation - To solve the large-scale problem: The Segmentation and Scroll strategy used to draw train timetable piecewised - CPLEX solver, and the visualization and index statistics of train timetable are realized by MATLAB.

Case study：Non－cyclic timetable

$>1318 \mathrm{~km}, 23$ stations
$>\mathbf{G}, \mathbf{D}$
$>$ Headway：4min
$>$ Dwell time at big station：2min
the other station：1min

- 大节点（省会城市）
- 小节点

北京南

- 廊坊
- 天津南
- 沧州西
- 德州东
- 济南西
- 泰安
- 曲阜东
- 滕州东
- 本庄
- 徐州东
- 宿州东

上海虹桥

Beijing－Shanghai

Case study：Non－cyclic timetable

非京交通大学
BeiJing JiaoTong University

2017． 01 timetable at Xuzhou－Bengbu

Case study: Non-cyclic timetable

2017-01 timetable at Xuzhou-Bengbu
occupation

	Earliest departure	Latest arrived	Occp.ed timf
real world	$\mathbf{6 : 4 0}$	$\mathbf{2 3 : 2 2}$	$\mathbf{1 0 0 2}$
optimized	$\mathbf{6 : 4 8}$	$\mathbf{2 3 : 0 1}$	-973
	Travel	Travel speed	Technical speed
	time $/ \mathbf{m i n}$	$/(\mathbf{k m} / \mathbf{h})$	$/(\mathbf{k m} / \mathrm{h})$
real world	42543	219	228.7
optimized	41811	223.5	240.0

train	Travel /min		Travel speed $/(\mathbf{k m} / \mathrm{h})$		Technical speed/(km/h)	
	RW	Opt	RW	Opt	RW	Opt
G	41821	41198	221.4	225.1	230.8	241.2
D	722	613	141	162.3	194	180.1

Case 2

Cyclic operation

Analysis on section capacity for cyclic timetable（TR．Part C 2016）

－Integrating capacity analysis with timetabling can reveal the influence of the structure of train line plans and operating on improving capacity utilization ．
－For most capacity analyses and cyclic timetabling methods， the cycle time is a constant．
－A minimum cycle time calculation（MCTC）model based on the periodic event scheduling problem（PESP）for a given train line plan．A non－collision constraint and a series of flexible overtaking constraints（FOCs）are constructed based on variations of the original binary variables in the PESP．
－Because of the complexity of the PESP，an iterative approximation（IA）method for integration with the CPLEX solver is proposed．

Problem and Model

■ Our model

$>$ based on the PESP and the model in Sparing and Goverde (2013)
$>$ further ongoing study of our previous paper (Zhang and Nie (2016) on Transportation Part C)

- Objective: minimize the cycle time T
- Input: periodic line plan, operation parameters and service requirements
- Output: minimum cycle time T (important), periodic timetable

Methods and Algorithms

BeiJing JiaoTong University

- The (ILP) model was coded by MATLAB R2012a and solved by Cplex 12.3
- Our extended iterative approximation methods can help Cplex solver reducing the computation time

Case study: Cyclic timetable

Fig. 14. Examples of timetables different colors represent different train lines; the blue numbers indicate the numbers of the lines; $K=0$;

Case study: Cyclic timetable

Fig. Influence of the regularity constraint and the train speed gap on the minimum T (the MCTC model with the FOCs; the average computation time for all cases is $\mathbf{4 , 4 2 0}$ seconds).

Case study: Cyclic timetable

The proportion of fast trains ($\mathbf{2 3 0} \mathbf{- 2 5 0} \mathbf{2 8 0} \mathbf{- 3 0 0} \mathbf{~ k m} / \mathrm{h}$)
Fig. Influence of K and the proportion of fast trains on the minimum T (MCTC model with the FOCs).

Real world Case: Cyclic timetabl

Fig. 19. Time-space diagram of the solution for the realworld test case with the FOCs

Cross-line train

$>$ Trains which pass/across at least two different railway lines at connection/border stations
$>$ A train time window is the time span that the train can depart or arrive in, and depends on the requirements of timetabling (usually for passenger transfers in stations)

A train time window for cross-line train

- Naming rules of the experiments: four factors of train time window are included

- "0-0-0-*" means the case without time windows, i.e. the basic case

Case study

$>$ Beijing－Shanghai High Speed Railway
Q Beijing South
Langfang
Tianjin South
Cangzhou West

Dezhou East
$>$ Only the impacts of the number of time windows are analysed（time window in origin stations，ten minutes span，$\delta=0$ ）

Jinan West

－Qufu East
－Tengzhou East
－Zaozhuang
$>$ Time period of line plan is two hours

Property	Real－world case
Number of stations	23
Number of trains	18
Number of lines（train stop schedules）	17
Line plan	17 types of train stop schedule

The structure of train line plan

$>$ Cross－line train： 69.7%

Section	Total trains	Cross－line	\％
北京南－廊坊	109	50	45.9%
廊坊－天津南	103	47	45.6%
天津南－沧州西	128	69	53.9%
沧州西－德州东	126	68	54.0%
德州东－济南西	125	68	54.4%
济南西－杰庄	123	73	59.3%
杰庄－徐州东	121	71	58.7%
徐州东－宿州东	142	90	63.4%
宿州东－蚌埠南	141	89	63.1%
蚌埠南－南京南	125	70	56.0%
南京南－上海虹桥	109	57	52.3%

Case study

－Box－plot：number of time windows

Case study

－Box－plot：number of time windows

> The overlaps show that even the number of time windows increases，they still have a chance to obtain low minimum cycle time．Therefore，the significance of the time window location is highlighted．

Optimize the structure of Train line plan

Reduce
 Cross-line train

Categorize G,D
train speed Optimize the

Regularize Stop

Structure

Utilize
Triangle area

Reduce Train Stops

Future huge traffic demand

\square Year 2016

Passenger: 2.75 billion, 2.0 times/person \square Year 2020
Demand: 1.45 billion people $\times 4$ times $=5.8$ billion persons?
Objective: 4 billion
(National Railway Cooperation)

Thanks！

？
 Question

